
www.manaraa.com

Submitted to the Symposium on Theoretical Aspects of Computer Science
www.stacs-conf.org

LOW-CONTENTION DATA STRUCTURES

JAMES ASPNES 1 AND DAVID EISENSTAT 2 AND YITONG YIN 1

1 Department of Computer Science, Yale University, 51 Prospect St, New Haven, CT 06511, USA
E-mail address, James Aspnes: aspnes@cs.yale.edu
E-mail address, Yitong Yin: yitong.yin@yale.edu

2 55 Autumn St, New Haven, CT 06511, USA
E-mail address: eisenstatdavid@gmail.com

Abstract. We consider the problem of minimizing contention in static dictionary data structures,
where the contention on each cell is measured by the expected number of probes to that cell given
an input that is chosen from a distribution that is not known to the query algorithm (but that
may be known when the data structure is built). When all positive queries are equally probable,
and similarly all negative queries are equally probable, we show that it is possible to construct a
data structure using linear space s, a constant number of queries, and with contention O(1/s) on
each cell, corresponding to a nearly-flat load distribution. All of these quantities are asymptotically
optimal. For arbitrary query distributions, the lack of knowledge of the query distribution by the
query algorithm prevents perfect load leveling in this case: we present a lower bound, based on
VC-dimension, that shows that for a wide range of data structure problems, achieving contention
even within a polylogarithmic factor of optimal requires a cell-probe complexity of Ω(log log n).

1. Introduction

For shared-memory multiprocessors, memory contention measures the extent to which proces-
sors might access the same memory location at the same time, and is one of the main issues for
realistic systems [9, 13] and theoretical models [2, 7]. In [6], a theoretical model is introduced by
Dwork et al. to formally address the contention costs of algorithmic problems. In this paper, we
propose to study the contention cost of a data structure, which measures how many queries to
the data structure might simultaneously access the same memory cell. To avoid the question of
how many queries are running at the same time, we measure contention indirectly, by counting
the expected number of probes to a given cell for each individual query. The expected number of
probes to the cell for some fixed number m of simultaneous queries can then be bounded using
linearity of expectation.

With binary search, for example, the entry in the middle of the table is accessed on every query,
as is the cell storing the hash function or root-level index with perfect hashing and similar index-
based data structures. Depending on the query distribution, the remaining load may be balanced
almost as badly over the other cells. So far, our techniques for avoiding this problem require static

1998 ACM Subject Classification: E.1 DATA STRUCTURES.
Key words and phrases: Data structure, static dictionary, contention.
James Aspnes is supported in part by NSF grant CNS-0435201. Part of the work was done while David Eisenstat

was a graduate student at Brown University.

c© J. Aspnes, D. Eisenstat, and Y. Yin
Confidential — submitted to STACS

1

www.manaraa.com

data structures, where the data structure is built in advance by a construction algorithm that may
know the query distribution, but queries are performed by a fixed algorithm that does not (although
it may use randomization itself to spread the query load more evenly).

The assumption that the query algorithm does not know the query distribution is natural.
Often the query distribution will be highly correlated with the contents of the data structure, as
in our simplest case where we consider a uniform distribution on successful queries to a static
dictionary. Providing the query distribution to the query algorithm in such a case would, in effect,
give it significant information about the contents of the data structure.

1.1. Model

Formally, a data structure problem is a function f : Q×D → {0, 1}, such that for every query
x ∈ Q and every data set S ∈ D, f(x, S) specifies the answer to the query x to data set S. A

classic problem is the membership problem, where Q = [N] and D =
([N]

n

)

for some N ≫ n,
and f(x, S) = 1 if and only if x ∈ S.

We assume that the query x ∈ Q follows some probability distribution q over Q.
For any data set S ∈ D and any query distribution q over Q, a table TS,q : [s] → {0, 1}b of s cells,

each of which contains b bits, is prepared. Given a query x, a probabilistic cell-probing algorithm A
computes the value of f(x, S) by making t randomized adaptive cell-probes I

(1)
x , I

(2)
x , . . . , I

(t)
x ∈ [s].

The algorithm A may depend on f , but not on S or q (except to the extent that later probes may
depend on the outcome of earlier probes, whose results might encode information about S and q).

The contention of a cell is the expected number of probes to the cell during one execution of
A. This will be equal to the probability that the cell is probed at all, provided A is sensible enough
not to probe the same cell twice, but it is easier to work with expectations. In more detail:

Definition 1.1. For a fixed table TS,q, for a query X chosen randomly from Q according to the

distribution q, the sequence of cell-probes is I
(1)
X , I

(2)
X , . . . , I

(t)
X . Let Y (t)(x, j) be the 0-1 valued

random variable indicating whether I
(t)
x = j. The contention of cell j at step t is defined by

Φt(j) := E
[

Y (t)(X, j)
]

,

where the expectation is taken over both X and the random I
(t)
x . The total contention of cell j is

Φ(j) :=
∑

t Φt(j).

It is obvious that
∑

j Φt(j) = 1, therefore 1
s ≤ maxj Φt(j) ≤ 1. Ideally, we want maxj Φt(j) to

approach 1
s .

A balanced cell-probing scheme is defined as follows:

Definition 1.2. An (s, b, t, φ)-balanced-cell-probing scheme for problem f : Q × D → {0, 1} is a
cell-probing scheme such that for any S ∈ D and any probability distribution q over Q, a table
TS,q : [s] → {0, 1}b is constructed, such that for any query x ∈ Q, the algorithm returns f(x, S)
by probing at most t cells, and for a query x ∈ Q generated according to the distribution q, the
contention Φk(j) is bounded by φ for any 1 ≤ k ≤ t and any j ∈ [s].

Such schemes have the very strong property that not only is contention bounded across an
execution of the query algorithm, but each individual step gives low contention.

Given a fixed table TS,q, we can summarize the contention succinctly using linear algebra. Let

Pt be a |Q| × s matrix with Pt(x, j) := Pr[I
(t)
X = j] = E[Y (t)(X, j)]. The contention on all cells can

be computed by Φt = qPt, specifically,

Φt(j) = E
[

Y (t)(X, j)
]

=
∑

x∈Q

Pr [X = x] · E
[

Y (t)(x, j)
]

=
∑

x∈Q

qx · Pt(x, j).

2

www.manaraa.com

Finally, for our lower bound, it will be helpful to consider data structure problems from the
perspective of communication complexity. In this view, a data structure is a communication pro-
tocol between an adaptive player Alice for the cell-probing algorithm and an oblivious player Bob
for the table. The input to Bob is a pair (S, q), and the input to Alice is a query x ∈ Q, which is
generated according to the distribution q. Together they compute f(x, S) via communication. The
contention then counts the probability of each type of message sent by Alice.

1.2. Our results

Our results are organized as follows:

• We note an especially interesting class of query distributions: distributions that are uniform
over both the set of positive queries and the set of negative queries (but not necessarily
uniform over all queries). In Section 2, we introduce a linear-size, constant-time cell-probing
scheme for the membership problem, with maximum contention O(1/n). It is easy to see
that this data structure is asymptotically optimal in all three parameters.

• In Section 3, we study data structures with arbitrary query distribution. For this general
case, we prove a lower bound for all the balanced cell-probing schemes satisfying a certain
natural technical restriction. The lower bound is a time-contention trade-off: for any prob-
lem which has a non-degenerate subproblem of size n, if the contention is within Polylog(n)
to the optimum, the time complexity is Ω(log log n). This directly implies the same lower
bound for the membership problem.

1.3. Related work

Our first upper bound is based on the well-known FKS construction of Fredman et al. [8] and
subsequent work by Dietzfelbinger and Meyer auf der Heyde extending these results to the dynamic
case [3–5]; we will refer to this latter construction, as described in [4], by DM.

The FKS construction is a static data structure for the membership problem, based on a
two-level tree of hash tables, with linear space and constant lookup time.

In DM, the hash functions used in FKS with are replaced with a new family that gives a more
even distribution of load across the second layer of the tree, which is used to get bounded worst-case
update costs for the dynamic case. In [3] and [5], DM is implemented in the PRAM model and
the model of a complete synchronized network of processors respectively. Both implementations
optimize the contention on individual processors, but do not consider the contention on individual
memory locations.

Membership can also be solved with optimal time and space complexity using cuckoo hashing
[12]; as with FKS and DM, the contention of the standard implementation is high, mostly because
all queries read the hash function parameters from the same locations.

For FKS, DM, and cuckoo hashing, contention can be decreased by storing the hash function
redundantly. Under the assumption that the query is distributed uniformly within both the positive
set and the negative set, this gives a maximum contention of Θ(

√
n) times optimal for FKS, and

Θ(ln n/ ln ln n) times optimal for DM and cuckoo hashing; while for arbitrary query distributions,
the contentions can be arbitrarily bad. This is not surprising, given that none of these data
structures are designed with memory contention in mind; nonetheless, we show that it is possible
to do substantially better in both for both classes of distributions.

3

www.manaraa.com

2. Low-contention uniform membership queries

We assume that N = |U | ≥ n2, and each cell in the table contains a b-bit word, where
b = log2 N .

Theorem 2.1. There exists an (O(n), b, O(1), O(1/n))-balanced-cell-probing scheme for the mem-
bership problem of n elements, with the assumption that the query is uniformly distributed within
both positive queries and negative queries.

Given a data set S ∈
(

U
n

)

, the data structure can be constructed in expected O(n) time on a
unit-cost machine.

To see how our data structure works, it may help to start by considering the query procedure
for FKS hashing. FKS hashing works by taking a standard hash table and using a secondary perfect
hashing scheme within each of O(n) “buckets” to resolve collisions between elements hashed to the
same bucket. Even though the largest bucket may contain O(log n/ log log n) elements, and the
size of the i-th bucket is proportional to the square n2

i of the number of items ni in that bucket,
because most buckets are small, the sum of these squares is likely to be linear in n.

FKS guarantees that all queries finish in exactly three probes: the first probe reads the param-
eters of the hash function; the second reads a pointer to the “bucket” in which the target item will
be found, as well as information about the size of the bucket and the perfect hash function used
within the bucket; and the third reads the actual element. This produces contention 1 on the cell
for the first probe and contention Θ(ni/n) on the cell for the second probe; both are much worse
than our goal of O(1/n).

We can reduce the contention for the first probe by replication; instead of probing a single cell,
we probe one of n identical copies. The second probe is trickier; we would like to replicate the
information for large buckets, but the query algorithm does not know which buckets are large.

Our approach is to organize the buckets into Θ(n/ log n) groups of Θ(log n) buckets each. While
individual buckets may vary significantly in size, we can show that when using the hash functions
of DM [4], the total size of each group will be O(log n) with reasonably high probability. A simple
bit-vector encoding allows us to indicate the size of all buckets in a group in a single O(log n)-
bit cell, which is replicated O(log n) times to reduce contention to O(1/n). Knowing the size of
each bucket in the group, the query algorithm can deduce the storage range for the replicated
headers of the target bucket, read the relevant header information (including both a pointer to the
actual location of the bucket and the parameters of its secondary has function) from a randomly-
distributed probe, and finally use the bucket’s perfect hash function to find the target element.
This four-phase procedure requires a constant number of probes and still uses only O(n) space
with O(1/n) contention, for for either uniform positive or uniform negative queries.

2.1. Hash families

In [1], universal hash classes were introduced. For d ≥ 2, a family of functions from U
to [m] is d-wise independent if for any d distinct elements x1, x2, . . . , xd from U , the hash values
h(x1), h(x2), . . . , h(xd) are uniformly and independently distributed over [m]. A d-wise independent
family can be constructed from a polynomial of degree d.

Let Hd
m denote a d-wise independent hash family of hash functions from U to [m]. It is well

known that if d ≥ 2 and m ≥ n2, for any S ∈
(U

n

)

, with at least 1
2 probability a uniformly random

h ∈ Hd
m maps each element in S to a distinct value; i.e., it is a perfect hash function.

We use the following hash family, first introduced in [4].

4

www.manaraa.com

Definition 2.2 (DM [4]). For f ∈ Hd
m, g ∈ Hd

r , and z ∈ [m]r the hash function hf,g,z : U → [m] is
defined by

hf,g,z(x) := (f(x) + zg(x)) mod m.

The hash family Rd
r,m is

Rd
r,m := {hf,g,z | f ∈ Hd

m, g ∈ Hd
r , z ∈ [m]r}.

Given a hash function and a set of elements, we define the buckets and loads as follows.

Definition 2.3. For h : U → [m], S ⊆ U , and i ∈ [m], the i-th bucket B(S, h, i) := {x ∈ S |
h(x) = i}, and the load of the i-th bucket is ℓ(S, h, i) := |B(S, h, i)|.

The following theorem is from [11]. It bounds the deviation of the sum of a 0-1 valued d-
independent sequence.

Theorem 2.4 (Corollary 4.20, [11]). Let X1, . . . ,Xn be 0-1 valued, d-independent, equidistributed
random variables. Let X =

∑n
i Xi. If d ≤ 2E[X], then

Pr [X − E[X] > t] ≤ O

(

(E[X])d/2

td

)

.

The following is a special case to the Hoeffding’s theorem [10].

Theorem 2.5 (Hoeffding). Let Y1, . . . , Yr be independent random variables with range of values in
[0, d]. Let Y =

∑r
i Yi, and c > e be some constant. If cE[Y] ≤ rd, then

Pr [Y ≥ cE [Y]] ≤
(e

c

)
c
d
E[Y]

.

For d-universal hash families, the following theorem holds.

Theorem 2.6 (Fact 2.2, [4]). Let S be a fixed set of n elements. Let f be chosen from Hd
m uniformly

at random, where d > 2 is a constant and m ≤ 2n/d. Then

Pr [∀i ∈ [m], ℓ(S, f, i) ≤ d] ≥ 1 − n · (2n/m)d.

The following lemma characterizes the load distribution of functions from various families.

Lemma 2.7 ([4, 8, 11]). Fix an S ∈
(U

n

)

. Let c > e and d > 2 be constants. The following holds:

(1) For r = n1−δ where 2
d+2 < δ < 1 − 1

d , and g from Hd
r , Pr [∀i ∈ [r], ℓ(S, g, i) ≤ cn/r] ≥

1 − o (1).
(2) For m = n

α lnn where α > d
c(ln c−1) , and h′ from Rd

r,m, Pr [∀i ∈ [m], ℓ(S, h′, i) ≤ cn/m] ≥
1 − o(1)

(3) (FKS condition) For s = βn where β ≥ 2, and h from Rd
r,s, Pr

[

∑

i∈[s] ℓ
2(S, h, i) ≤ s

]

≥ 1
2 .

Proof. Let S = {x1, x2, . . . , xn}.
(1) For a fixed j ∈ [r], let Xi be a 0-1 valued random variable that indicates whether g(xi) = j,

and let X =
∑n

i Xi. It is obvious that E[X] = n
r = nδ. Due to Theorem 2.4,

Pr
[

X − nδ ≥ (c − 1)nδ
]

≤ O
(

nδd/2/nδd
)

= O
(

n−δd/2
)

.

Therefore,

Pr
[

∃j ∈ [r], ℓ(S, g, j) >
cn

r

]

≤ r · Pr
[

ℓ(S, g, j) > cnδ
]

≤ n1−δ · Pr
[

X − nδ > (c − 1)nδ
]

≤ O
(

n1−δ−δd/2
)

= o(1).

5

www.manaraa.com

(2) We assume that h′ is defined by (f, g, z) where f and g are randomly drawn from Hd
m and

Hd
r respectively, and z is chosen uniformly from [m]r. We denote by E1 the event that ∀i ∈

[r], ℓ(S, g, i) ≤ cn/r, and denote by E2 the event that ∀i ∈ [r],∀j ∈ [m], ℓ(B(S, g, i), f, j) ≤ d.
Due to the first part, E1 holds with probability 1−o(1). Conditioning on E1, according to

Theorem 2.6, with probability 1−O(nδ(d+1)/md), it holds that ∀j ∈ [m], ℓ(B(S, g, i), f, j) ≤
d. By union bound, with probability 1 − O(n1−δ · nδ(d+1)/md) = 1 − O(n1−d(1−δ) lnd n) =
1 − o(1), it holds that ∀i ∈ [r],∀j ∈ [m], ℓ(B(S, g, i), f, j) ≤ d, i.e. E2 holds. Therefore,
Pr[E1 ∧ E2] = Pr[E1] · Pr[E2 | E1] = (1 − o(1))(1 − o(1)) = 1 − o(1).

Conditioning on E1 ∧ E2, for any fixed j ∈ [m], for i = 1, 2, . . . , r, define random variable
Yi as

Yi := |{x ∈ S | g(x) = i and f(x) + zg(x) ≡ j (mod m)}|.
Let Y =

∑r
i Yi. Note that Yi = ℓ(B(S, g, i), h′, j) = ℓ(B(S, g, i), f, (j − zi + m) mod m) and

Y = ℓ(S, h′, j).
Because E2 holds, Yi ≤ d for all i ∈ [r], and Yi are independent because zi are independent.

E[Yi | f, g] =
∑

zi∈[m]

Pr[zi] · ℓ(B(S, g, i), f, (j − zi + m) mod m)

=
1

m

∑

k∈[m]

ℓ(B(S, g, i), f, k)

=
1

m
ℓ(S, g, i).

Therefore

E[Y] = E [E [Y | f, g]] =
1

m
E

∑

i∈[r]

ℓ(S, g, i)

 =
|S|
m

=
n

m
.

According to Theorem 2.5, it holds that Pr[Y ≥ cn/m] ≤ (e/c)cα ln n/d = o(n−1). By union
bound, Pr[∀j ∈ [m], ℓ(S, h′, j) ≤ cn/m] = 1 − m · Pr[Y ≤ cn/m] = 1 − o(1).

Recall that the above holds when conditioning on E1 ∧ E2, and since Pr[E1 ∧ E2] = 1 −
o(1), that ∀j ∈ [m], ℓ(S, h′, j) ≤ cn/m holds unconditionally with probability at least (1 −
o(1))(1 − o(1)) = 1 − o(1).

(3) For every i, j ∈ [n] where i 6= j, let Xij be 0-1 valued random variable that indicates whether
h(xi) = h(xj). Let X =

∑

i6=j Xij be the total number of ordered collision pairs. It is easy
to see that

X = 2
∑

i∈[s]

(

ℓ(S, h, i)

2

)

=
∑

i∈[s]

ℓ2(S, h, i) − n.

Note that h is at least 2-wise independent, thus for any i 6= j, E[Xij] = Pr[h(xi) =
h(xj)] = 1/s, thus E[X] = n(n − 1)/s. Due to Markov’s inequality,

Pr

∑

i∈[s]

ℓ2(S, h, i) > s

 = Pr[X > s − n] ≤ E[X]

(s − n)
≤ 1

β(β − 1)
≤ 1/2.

6

www.manaraa.com

2.2. Data structure construction

Let c = 2e. For d > 2, choose appropriate constants α and β as stated in Lemma 2.7, and
let r = n1−δ and m = n

α lnn . In addition, choose an appropriate constant β ≥ 2 to make s = βn
divisible by m.

Given any data set S ∈
(

U
n

)

, uniformly choose f ∈ Hd
s , g ∈ Hd

r , and z ∈ [s]r, and construct a

uniformly random h ∈ Rd
r,s by letting h(x) := (f(x) + zg(x)) mod s. Define a new hash function

h′ : U → [m] by h′(x) = h(x) mod m. Note that h′ is a uniformly random function from the family
Rd

r,m because m divides s. Specifically,

h′(x) =
(

f(x) + zg(x)

)

mod s mod m =
(

f(x) mod m + zg(x) mod m
)

mod m.

For uniform f ∈ Hd
s and uniform z ∈ [s]r, (f mod m) and (z mod m) are uniform over Hd

m and
[m]r respectively. Therefore, h′ is uniform over Rd

r,m.
We would like our hash function to satisfy the property:

P(S) :=

{

(

g, h′, h
)

∈ Hd
r ×Rd

r,m ×Rd
r,s

∣

∣

∣

∣

∀i ∈ [r], ℓ(S, g, i) ≤ cn/r, and ∀i ∈ [m], ℓ(S, h′, i) ≤ cn/m, and
∑

i∈[s]

ℓ2(S, h, i) ≤ s

}

Due to Lemma 2.7, and by applying the union bound to all unwanted events, for the above g, h′

and h, it holds that (g, h′, h) ∈ P(S) with probability at least 1/2 − o(1). Therefore by repeatedly
generating (g, h′, h), we satisfy P(S) within expected O(1) trials. Note that P(S) can be verified
in O(n) time in a unit-cost machine, thus a good hash function can be found within expected O(n)
time.

The data structure is organized in rows of cells where each row contains s cells. Let T (i, j)
represent the j-th cell in the i-th row in the data structure. T is constructed as follows:

• Let a0, a1, . . . , a2d−1 denote the 2d words that represent the two d-universal functions f and
g. Let T (i, j) = ai for every i ∈ [2d] and every j ∈ [s]. Let T (2d, j) = z[j mod r] for every
j ∈ [s].

• We say that h assigns the n elements in S into s buckets, and h′ arranges the buckets into
m groups according to the congruence classes of a modulo m. For group i ∈ [m], we define
the group-base-address GBAS(i) as GBAS(0) = 0 and

GBAS(i) = GBAS(i − 1) +
∑

k∈[s/m]

ℓ2(S, h, km + i − 1).

The vector GBAS can be computed in O(n) time in a unit-cost machine. Due to the
property P(S), GBAS(i) ≤ s for any i ∈ [m]. Let T (2d+1, j) = GBAS(j mod m), i.e. each
bucket stores the group-base-address of the group that the bucket belongs to.

• Let a group-histogram be a binary string where the load of each bucket in the group is
represented consecutively in unary code separated by zeros.

Each group contains s/m = αβ ln n buckets, and due to property P(S), each group
contains at most cn/m = cα ln n elements from S. Therefore the group-histogram uses at

most α(β + c) ln n bits. Let ρ := ⌈α(β+c) ln n
b ⌉. Observe that because b = Θ(log n), ρ = O(1).

Let a′0j, a
′
1j . . . , a′ρ−1,j denote the ρ words that store the group-histogram of group j.

Let T (2d + 2 + i, j) = a′i,(j mod m), for i = 0, 1, . . . , ρ − 1, and for all j ∈ [s].

• The last two rows are used to perfectly hash each bucket. Each bucket i ∈ [s] owns ℓ2(S, h, i)
cells in each row. Due to P(S), the total space is at most s. The spaces owned by the buckets
are organized in groups. If bucket i is the k-th bucket in group j, then the spaces owned

7

www.manaraa.com

by the buckets are sorted lexicographically. This can be done in a total O(n) time in a
unit-cost machine.

In the (2d + ρ + 1)th row, for each individual bucket i, the perfect hash function h∗
i is

stored repeatedly in the space owned by the bucket. In the (2d + ρ + 2)th row, the actual
data in each bucket i is stored according to the hash function h∗

i .

The table T has (2d + ρ + 2) = O(1) rows, each of which contains s = O(n) words, for a total of
O(n) words. Each step of the construction costs O(n) time, for a total of O(n) time.

2.3. Queries and contention

We query whether x is in S with the following algorithm. Each random choice is assumed to
be independent and uniform within its range.

(1) For each i ∈ [2d], choose j ∈ [s], and read T (i, j); this gives f and g. Next choose k ∈ [s/r]
and read T (2d, kr + g(x)), which stores zg(x). We can now compute h = (f + zg) mod s and
h′ = h mod m.

(2) Choose k in [s/m], and read T (2d, km+h′(x)), which stores GBAS(h′(x)). For each i ∈ [ρ]

where ρ = ⌈α(β+c) lnn
b ⌉, choose some j ∈ [s/m], and read T (2d + 1 + i, jm + h′(x)); we

thus obtain the group-histogram group h′(x) With the group-base-address and the group-
histogram, the exact range of the address owned by bucket h(x) can be determined: it runs
from ih(x) to i′h(x) inclusively, where

ih(x) := GBAS(h′(x)) +

⌈h(x)/m⌉−1
∑

k=0

ℓ2
(

S, h, km + h′(x)
)

,

i′h(x) := ih(x) + ℓ2 (S, h, h(x)) − 1.

All the values ℓ2(S, h, km + h′(x)) for k ∈ [s/m] are stored in the group-histogram of group
h′(x).

(3) If i′h(x) < ih(x), the bucket h(x) is empty: return 0. Otherwise, choose j ∈ [ih(x), i
′
h(x)] and

read T (2d+ ρ+ 1, j) to get the perfect hash function h∗. If T (2d+ ρ+ 2, ih(x) + h∗(x)) = x,
return 1, else return 0.

The correctness of the algorithm is guaranteed by the existence of hash functions with property
P(S) and the existence of the perfect hashing scheme for each bucket, which is guaranteed. The
query algorithm makes at most one probe to each row of T , thus the cell-probe complexity is O(1).

For contention, we first consider the contribution of the positive queries. All events below
are conditioned the target element being in S. At each step before the last probe, an expected
1, 1

nℓ(S, g, i1),
1
nℓ(S, h′, i2), or 1

nℓ(S, h, i3) probes are balanced over a range of size s, s/r, s/m,

or ℓ2(S, h, i3) respectively, therefore due to property P(S), the maximum contention is O(1/n).
For the last probe, the perfect hash function sends each query to a distinct cell so the contention
is obviously O(1/n). Therefore, the total contention contributed by positive queries is at most
O(1/n).

Lemma 2.8. Let S̄ denote U \ S, and N = |U | = ω(n). For any hash function h : U → [k] which
is uniform over the domain, for sufficiently large n, ∀i ∈ [k], ℓ(S̄, h, i) ≤ 2(N − n)/k.

Proof. Because h is uniform over the domain, ℓ(U, h, i) = N/k for any i ∈ [k]. For N = ω(n), it
holds that ℓ(S̄, h, i) = ℓ(U, h, i) − ℓ(S, h, i) ≤ N/k ≤ 2(N − n)/k.

8

www.manaraa.com

Note that g, h′, and h are all uniform over the domain. Due to Lemma 2.8, the loads of negative
queries to all types of buckets are asymptotically even. The same argument as above can be applied
to bound the contention caused by negative queries to O(1/n).

3. A lower bound for arbitrary query distributions

By treating a data structure problem f : Q×D → {0, 1} as a class of |D| number of classifica-
tions of Q, its VC-dimension can be defined.

Definition 3.1. The VC-dimension of a data structure problem f : Q×D → {0, 1}, denoted by

VC-dim(f), is the maximum n such that there exists a set {x1, x2, . . . , xn} ∈
(Q

n

)

such that for any
assignment y ∈ {0, 1}n, there exists some S ∈ D, with f(xi, S) = yi for all i.

It is easy to see that the VC-dimension of the membership problem is n, where n is the
cardinality of the data set.

We define such a cell-probing scheme (T,A) which is pair of an arbitrary table structure T and
a cell-probing algorithm A which satisfies a natural restriction described as follow.

Definition 3.2. Let T : D × [0, 1]Q × [s] → {0, 1}b be a table structure such that for any fixed
S ∈ D and any fixed query distribution q over Q, a table TS,q : [s] → {0, 1}b of s cells is constructed,
where each cell contains b bits.

Given any query x ∈ Q, a cell-probing algorithm A returns f(x, S) by making at most

t∗ randomized adaptive probes I
(1)
x , I

(2)
x , . . . , I

(t∗)
x ∈ [s] to the table TS,q, such that the maximum

contention Φt ≤ φ∗ for any t ≤ t∗, and for any fixed query x and any fixed table TS,q, the random

variables I
(t)
x for all t ≤ t∗ are jointly independent.

The independence of cell-probes of A does not make A non-adaptive, because the independence
holds only when the query and the table are both fixed. Note that all deterministic cell-probing
algorithms satisfy this property, because once the table and the query are both fixed, the sequence
of the cell-probes of a deterministic cell-probing algorithm are fixed, hence they are jointly indepen-
dent. Informally speaking, for A, randomization is used only for balancing the contention, while
the mechanism of decision making is still deterministic. All our upper bounds presented in the
paper and any upper bounds constructed by the technique of distributing probes across multiple
copies of critical cells are all included in this definition.

Theorem 3.3. For any data structure problem f with VC-dim(f) = n, if there exists a cell-

probing scheme (T,A) as defined in Definition 3.2, and if b ≤ Polylog(n) and φ∗ ≤ Polylog(n)
s , then

t∗ = Ω(log log n).

The theorem is proved by first running n different instances of queries in parallel and then
bounding the speed with which these parallel instances of the cell-probing algorithm gather infor-
mation.

Lemma 3.4. If there exists a cell-probing scheme (T,A) for the data structure problem f where
(T,A) and f are as in Theorem 3.3, then there exists a communication protocol between an algorithm
A′′ and a black-box B which is specified as follows. The input to B is an arbitrary stochastic vector

q ∈ [0, 1]n that
∑n

i=1 qi ≤ 1, which is unknown to A′′. The communication between A′′ and B occurs
in rounds.

(1) At round t, A′′ specifies an n × s matrix Pt, called a probe specification, and sends it to
B, where Pt is adaptive to the information received previously by A′′, and for any 1 ≤ i ≤ n,

9

www.manaraa.com

it holds that
s
∑

j=1

Pt(i, j) ≤ 1 ; (3.1)

max
1≤j≤s

Pt(i, j) ≤ φ∗

qi
. (3.2)

(2) Upon receiving a Pt, B sends Ct bits to A′′, where Ct is a random variable that

E [Ct] ≤ b ·
s
∑

j=1

max
1≤i≤n

Pt(i, j) , (3.3)

where the expectation is conditioned on Pt, thus conditioned on all previous communication
between A′′ and B.

(3) After t∗ round, A′′ receives expected at least n · 2−2t∗ bits from B.

Proof. The idea of the proof is to run n instances of the cell-probing algorithm in parallel; to-
gether these instances compose A′′. We observe that the cell-probes of each individual cell-probing
algorithm can be specified by a probability distribution of probes over the table, and the joint dis-
tribution of the cell-probes of all n instances can be arbitrarily controlled as long as the marginal
distribution of the cell-probe of each individual instance is the same as before, therefore the total
number of bits obtained by A′′ in each round is bounded.

The details of the proof are given in Appendix A.

The following two combinatorial lemmas are needed for the proof of Theorem 3.3.

Lemma 3.5. Let M is an N × n nonnegative matrix. For any 1 ≤ u ≤ N , there exists Ru ∈
({1,2,...,n}

r

)

, such that
∑

i∈Ru
M(u, i) ≤ δ. If r =

√
5ǫ−1δn ln N , then there exists q ∈ [0, 1]n, such

that
∑

i qi = ǫ, and for all 1 ≤ u ≤ N , there exists 1 ≤ i ≤ n, such that M(u, i) < qi.

Proof. For each 1 ≤ u ≤ N , sort {M(u, i) | i ∈ Ru} by non-decreasing order and let R′
u ⊆

{1, 2, . . . , n} be the indices of the smallest r
2 entries. It holds that ∀i ∈ R′

u, M(u, i) ≤ 2δ
r , as

otherwise it contradicts the assumption that
∑

i∈Ru
M(u, i) ≤ δ.

It holds that for any choice of such {R′
u}1≤u≤N , there exists a T ⊆ {1, 2, . . . , n}, such that

|T | = 2n ln N
r and T intersects all R′

u. We prove this by the probabilistic method: let T be a uniformly

random subset of {1, 2, . . . , n} of size 2n lnN
r , thus each R′

u is missed by T with probability less than

(1 − r/2n)2n ln N/r < 1/N , thus by the union bound, T intersects all R′
u with positive probability.

Fix such a T , define q ∈ [0, 1]n as qi = ǫ|T |−1 = rǫ
2n ln N if i ∈ T , and qi = 0 if otherwise.

Therefore,
∑

i qi = ǫ, and for any 1 ≤ u ≤ N , for such i ∈ R′
u ∩ T , it holds that M(u, i) ≤ 2δ

r <
r

2n lnN = qi.

Lemma 3.6. For any nonnegative n × s matrix P that
∑

j P (i, j) ≤ 1 for every i, let R be the

largest subset of {1, 2, . . . , n} that
∑

i∈R
1

maxj P (i,j) ≤ s, it holds that

|R| ≥
s
∑

j=1

max
1≤i≤n

P (i, j).

Proof. The sum
∑

j maxi P (i, j) chooses exactly s entries to sum up. Let Ai be the set of chosen

columns in row i. Let xi :=
∑

j∈Ai
P (i, j). Note that xi ≤

∑

j P (i, j) ≤ 1. By pigeonhole principle,
for any 1 ≤ i ≤ n,

|Ai| ≥
∑

j∈Ai
P (i, j)

maxj P (i, j)
=

xi

maxj P (i, j)
.

10

www.manaraa.com

Note that
∑

i |Ai| = s, thus
∑

i
xi

maxj P (i,j) ≤
∑

i |Ai| = s.

Therefore the sum
∑

j maxi P (i, j) can be written as
∑

j maxi P (i, j) =
∑

i

∑

j∈Ai
P (i, j) =

∑

i xi, subject to the constraints that
∑

i
xi

maxj P (i,j) ≤ s and xi ≤ 1. It is easy to see that the

value of
∑

i xi is maximized when letting xi = 1 for i ∈ R and xi = 0 for i 6∈ R, therefore
∑

j maxi P (i, j) =
∑

i xi ≤ |R|.
Proof of Theorem 3.3.

Given the algorithm A′′ as described in Lemma 3.4, we will bound the speed that A′′ gathers
information. Due to Lemma 3.4, A′′ is a decision tree that the current node of depth (t − 1) has
Nt := 2Ct−1 children, each of which corresponds to a next probe specification Pt. We number these

Pt by u ∈ [Nt] and denote each as P
(u)
t , where u can be interpreted as the bit string received by

A′′ at round t − 1. We then inductively bound the next Ct.

Define an Nt × n matrix M (t) as that M (t)(u, i) := φ∗

maxj P
(u)
t (i,j)

. Each row of the matrix M (t)

corresponds to a possible next probe specification. We say that the stochastic vector q violates

row u of M (t) if there exists 1 ≤ i ≤ n, such that M (t)(u, i) < qi. Note that if row u of M (t) is

violated by q, then according to (3.2), the next probe specification cannot be P
(u)
t .

Let rt :=
√

5t∗φ∗sn lnNt . We say that a row u of M (t) is good if there exists R ⊆ {1, 2, . . . , n}
that |R| = rt and

∑

i∈R M (t)(u, i) ≤ φ∗s.

We claim that if a row u is not good, then for the corresponding P (u), it holds that
s
∑

j=1

max
1≤i≤n

P
(u)
t (i, j) ≤ rt. (3.4)

The proof is as follows: If a row u of M (t) is not good, then by definition, for any R of size rt,
∑

i∈R M (t)(u, i) > φ∗s, thus for any R′ that
∑

i∈R′
1

maxj P
(u)
t (i,j)

≤ s, it must hold that |R′| < rt,

therefore due to Lemma 3.6, it holds that
∑s

j=1 max1≤i≤n P
(u)
t (xi, j) ≤ rt.

Due to (3.4) and (3.3), the amount of information brought by a set of probes P
(u)
t where u is

a bad row in M (t), is bounded by brt bits. We show by an adversary argument that there exist a
q that makes A′′ always choose probes corresponding to bad rows. At each round t, the adversary
always chooses some q that violates all the good rows in M (t). According to Lemma 3.5, the
adversary can do so as long as t ≤ t∗. Setting ǫ = 1

t∗ and δ = φ∗s in Lemma 3.5, in each round,

the adversary can increase the value of some qi so that
∑n

i=1 qi is increased by at most 1
t∗ , thereby

violating all good rows in the current M (t). Thus before round t∗, the vector q is always stochastic.
Note that increasing the value of qi will never make a violated row non-violated, so it will not make
the adversary inconsistent.

Against such an adversary, at each round t, A′′ can only choose a probe specification P
(u)
t

where u is a bad row in M (t), according to Claim (3.4), which implies that
s
∑

j=1

max
1≤i≤n

Pt(i, j) ≤ rt =
√

5t∗φ∗sn ln Nt =
√

5t∗φ∗snCt−1 ln 2 .

Due to (3.3), E[Ct | . . .] ≤ b ·∑j maxi Pt(i, j) ≤
√

(5 ln 2)b2t∗φ∗snCt−1, where the expectation
is conditioned on all previous rounds of communication. Therefore the following recursion holds
for the sequence of random variables C1, C2, . . . , Ct:

E[Ct | Ct−1] ≤
√

(5 ln 2)b2t∗φ∗snCt−1 .

11

www.manaraa.com

The square root function is concave, thus by Jensen’s inequality, it holds for the unconditional
expectation that

E[Ct] = E[E[Ct | Ct−1]] ≤ E
[

√

(5 ln 2)b2t∗φ∗snCt−1

]

≤
√

(5 ln 2)b2t∗φ∗sn · E[Ct−1] .

Before the first probe, q is unknown to A′′, thus due to (3.2), for any i, j, P1(xi, j) ≤ φ∗, therefore
E[C1] ≤ b ·∑j maxi P1(xi, j) ≤ bφ∗s. Let a1 := bφ∗s and a := (5 ln 2)b2t∗φ∗sn. The following

recursion holds for E[Ct] that

E[C1] ≤ a1;

E[Ct] ≤ (a · E[Ct−1])
1
2 .

By induction, E[Ct] ≤ a21−t

1 a1−21−t

.
After t∗ rounds, the expected total number of bits received by A′′ is at least n · 2−2t∗ , therefore

n · 2−2t∗ ≤
∑

t≤t∗

E[Ct] ≤
∑

t≤t∗

a21−t

1 a1−21−t ≤ a1a
1−2−t∗

.

With the assumption that b ≤ Polylog(n) and φ∗ ≤ Polylog (n)
s , it holds that a1 ≤ Polylog(n) and

a ≤ n · Polylog(n). Solving the above inequality, we have that t∗ ≥ log log n − o(log log n) =
Ω(log log n). Theorem 3.3 is proved.

References

[1] J. Carter and M. Wegman. Universal classes of hash functions (Extended Abstract). In Proceedings of the ninth
annual ACM Symposium on Theory of Computing (STOC), pages 106–112. ACM New York, NY, USA, 1977.

[2] D. Culler, R. Karp, D. Patterson, A. Sahay, K. Schauser, E. Santos, R. Subramonian, and T. Von Eicken. LogP:
Towards a realistic model of parallel computation. ACM SIGPLAN Notices, 28(7):1–12, 1993.

[3] M. Dietzfelbinger and F. Meyer auf der Heide. An optimal parallel dictionary. In Proceedings of the first annual
ACM Symposium on Parallel Algorithms and Architectures (SPAA), pages 360–368. ACM New York, NY, USA,
1989.

[4] M. Dietzfelbinger and F. Meyer auf der Heide. A new universal class of hash functions and dynamic hashing
in real time. In Proceedings of the 17th International Colloquium on Automata, Languages and Programming
(ICALP), volume 443, pages 6–19. Springer, 1990.

[5] M. Dietzfelbinger and F. Meyer auf der Heide. How to distribute a dictionary in a complete network. In Pro-
ceedings of the twenty-second annual ACM Symposium on Theory of Computing (STOC), pages 117–127. ACM
New York, NY, USA, 1990.

[6] C. Dwork, M. Herlihy, and O. Waarts. Contention in shared memory algorithms. Journal of the ACM (JACM),
44(6):779–805, 1997.

[7] S. Fortune and J. Wyllie. Parallelism in random access machines. In Proceedings of the tenth annual ACM
Symposium on Theory of Computing (STOC’78), pages 114–118. ACM New York, NY, USA, 1978.

[8] M. Fredman, J. Komlós, and E. Szemerédi. Storing a Sparse Table with O(1) Worst Case Access Time. Journal
of the ACM (JACM), 31(3):538–544, 1984.

[9] M. Herlihy, B. Lim, and N. Shavit. Low contention load balancing on large-scale multiprocessors. In Proceedings
of the fourth annual ACM Symposium on Parallel Algorithms and Architectures (SPAA), pages 219–227. ACM
New York, NY, USA, 1992.

[10] W. Hoeffding. Probability inequalities for sums of bounded random variables. Journal of the American Statistical
Association, pages 13–30, 1963.

[11] C. P. Kruskal, L. Rudolph, and M. Snir. A complexity theory of efficient parallel algorithms. Theor. Comput.
Sci., 71(1):95–132, 1990.

[12] R. Pagh and F. Rodler. Cuckoo hashing. Journal of Algorithms, 51(2):122–144, 2004.
[13] P. Tzeng and D. Lawrie. Distributing hot-spot addressing in large-scale multiprocessors. IEEE Transactions on

Computers, 100(36):388–395, 1987.

12

www.manaraa.com

Appendix A. Proof of Lemma 3.4

The theorem is proved by first simulating the cell-probing algorithm A by a modified cell-
probing algorithm A′ who independently probes all cells in the table in every step, and then
running n instances of A′ in parallel as a new cell-probing algorithm A′′.

First, we observe that a randomized cell-probe can be simulated with bounded error by inde-
pendently probing all cells.

Definition A.1. A product-space cell-probe to a table of s cells is a random set J ∈ 2[s] such that
the probability space of J is a product space.

For the rest of the proof, let (T,A) and f be the cell-probing scheme and the data structure
problem assumed by Theorem 3.3. As in Theorem 3.3, we assume that such (T,A) for f .

Lemma A.2. There exists a product-space cell-probing algorithm A′, such that on any valid table
TS,q, for any query x ∈ Q, the following properties hold for the sequence of product-space cell-probes

J
(1)
x , J

(2)
x , . . . , J

(t∗)
x .

(1) At any step t ≤ t∗, an event of failure occurs independently with a probability at most 3
4

and A′ fails. Conditioned on that there is no failure after t∗ steps, which is an event with

probability at least 2−2t∗ , it holds that J
(1)
x , J

(2)
x , . . . , J

(t∗)
x are jointly independent and A′

returns what A returns.
(2) For any t ≤ t∗, the total probability of each product-space cell-probe of A′

∑

j∈[s]

Pr
[

j ∈ J (t)
x

]

≤ 1; (A.1)

(3) For any t ≤ t∗, the contention of any cell j ∈ [s]

q(xi) · Pr
[

j ∈ J (t)
x

]

≤ φ∗. (A.2)

Proof. A cell-probe of A can be represented as a random variable I ∈ [s], where I denotes the probed

cell. Let pi := Pr[I = i]. Let J ∈ 2[s] represent a product-space cell-probe. Given a probability
vector p, a cell-probe I is simulated by a product-space cell-probe as follows: Independently probe
each cell i ∈ [s] with probability p′i := min{pi,

1
2}. The resulting set is J . If |J | 6= 1, then fails; if

J = {i}, then fails with a probability ǫi := min{pi, 1 − pi}. Let I = i if not fail.

Case 1: pi ≤ 1
2 for all i ∈ [s]. Then for all i ∈ [s], p′i = pi and ǫi = pi. Let ρ =

∏

j∈[s](1−pj).

Since pi ≤ 1
2 for all i ∈ [s], it holds that ρ ≥ 1

4 .
The probability

Pr[I = i] = (1 − ǫi) · Pr[J = {i}] = (1 − pi) · pi

∏

j 6=i

(1 − pj) = piρ,

which is proportional to pi. The procedure succeeds with probability ρ ≥ 1
4 .

Case 2: Let p0 > 1
2 and all other pi < 1

2 . Then p′0 = 1
2 and ǫ′0 = 1 − p0, and for all i > 0,

it holds that p′i = pi and ǫ′i = pi. Let ρ′ =
∏

j>0(1 − pj). It holds that ρ′ > 1
2 since

∑

j>0 pj = 1 − p0 < 1
2 .

For i 6= 0, the probability Pr[I = i] = (1 − pi) · Pr[J = {i}] = 1
2ρ′pi; and for cell 0,

Pr[I = 0] = p0 · Pr[J = {i}] = 1
2ρ′p0.

The procedure succeeds with probability 1
2ρ′ > 1

4 .

For both cases, a cell-probe of A is simulated by a product-space cell-probe with a probability at
least 1

4 . The event of a failure occurs independently with probability at most 3
4 . With a probability

at least 2−2t∗ , no failure occurs at all, conditioned on which its is obvious that A′ can simulate
13

www.manaraa.com

A, and the product-space cell-probes are jointly independent since the cell-probes of A are jointly
independent.

The total probability of a product-space cell-probe is
∑

i Pr[i ∈ J] =
∑

i p
′
i ≤ 1. The probability

of a probe to each cell is no greater than before, therefore the maximum contention φ∗ not increased.

We then observe that by running n instances of the product-space cell-probing algorithm in
parallel, the joint distribution of cell-probes can be arbitrarily controlled as long as the marginal
distribution of cell-probes of each individual instance is the same as before.

Lemma A.3. Let A′′ be such an algorithm that on a valid table TS,q, for a set of n queries

{x1, x2, . . . , xn} ∈
(Q

n

)

, at step t, the algorithm A′′ randomly probes n sets of cells (L
(t)
x1 , L

(t)
x2 , . . . , L

(t)
xn).

If for every xi where 1 ≤ i ≤ n and every t ≤ t∗, the marginal distribution of L
(t)
xi is identical to

the distribution of J
(t)
xi , where J

(t)
xi is the t’s product-space cell-probe of the algorithm A′ on the same

table TS,q, then A′′ returns f(xi, S) for expected n · 2−2t∗ number of xi.

Proof. Let A′′ run an instance of A′ with input xi in parallel for every xi, denoted as A′
xi

. Let the

set of cells probed by each individual A′
xi

at time t be L
(t)
xi . On a fixed table TS,q and for a fixed

xi, since L
(t)
xi is identically distributed as J

(t)
xi , every individual instance of A′

xi
simulates a running

instance of A′ with input query xi. By Lemma A.2, each A′
xi

terminates in t∗ steps without failure

with probability at least 2−2t∗ , thus by the linearity of expectation, after t∗ time, the expected total
number of terminated instances is at least n · 2−2t∗ .

In the next lemma, we construct a joint distribution of cell-probes which minimizes the expected
total number of probed cells.

Lemma A.4. For any probability distribution of Ji ⊆ [s] where 1 ≤ i ≤ n and each Ji is a product
probability space, there exists a joint distribution (L1, L2, . . . , Ln), such that for every 1 ≤ i ≤ n,
Li is identically distributed as Ji, and it holds that

E

∣

∣

∣

∣

∣

∣

⋃

1≤i≤n

Li

∣

∣

∣

∣

∣

∣

 ≤
∑

j∈[s]

max
1≤i≤n

Pr [j ∈ Ji] .

Proof. We construct the joint distribution of (Li)i ∈ (2[s])n as follow.

• Let p̃j = max1≤i≤n Pr[j ∈ Ji]. Choose each j ∈ [s] independently with probability p̃j. Let
B denote the set of chosen elements of [s].

• For every 1 ≤ i ≤ n, let each j ∈ B join Li independently with probability Pr[j∈Ji]
p̃j

. Note

that p̃j ≥ Pr[j ∈ Ji], therefore the probability is well-defined.

For each 1 ≤ i ≤ n, and for every j ∈ [s], j joins Li independently with probability p̃j ·
Pr[j is chosen to Li | j ∈ B] = Pr[j ∈ Ji], thus each Li is identically distributed as Ji.

Note that for every Li, all of its elements are chosen from set B. It holds that

E

∣

∣

∣

∣

∣

∣

⋃

1≤i≤n

Li

∣

∣

∣

∣

∣

∣

 ≤ E [|B|] =
∑

j∈[s]

p̃j =
∑

j∈[s]

max
1≤i≤n

Pr[j ∈ Ji].

14

www.manaraa.com

Proof of Lemma 3.4. Let {x1, x2, . . . , xn} ∈
(Q

n

)

be a set of queries which achieves the VC-dimension
VC-dim(f) = n, i.e. any Boolean assignment of f(xi, S) is possible. Let such {x1, x2, . . . , xn} be
the input query set to A′′, where A′′ is as described in Lemma A.3. By an information theoretical
argument, in the worst case, A′′ has to collect expected n · 2−2t∗ bits information after t∗ steps.

Let the joint distribution of (L
(t)
x1 , L

(t)
x2 , . . . , L

(t)
xn) of A′′ be constructed as in Lemma A.4, the total

number of cells probed by A′′ in step t with (L
(t)
x1 , L

(t)
x2 , . . . , L

(t)
xn) is bounded. Let the n × s matrix

Pt defined as Pt(i, j) := Pr[j ∈ L
(t)
xi], and let qi := q(xi). Since each L

(t)
xi is identically distributed

as J
(t)
xi of A′ which is described in Lemma A.2, due to (3.2) and (3.3), it holds for the Pt that

∑

j∈[s] Pt(i, j) ≤ 1 and maxj∈[s] Pt(i, j) ≤ φ∗

qi
. Due to Lemma A.4, the expected number of bits

collected by A′′ in step t is bounded by b ·∑j∈[s] max1≤i≤n Pt(i, j). By seeing the running instance

of the algorithm A′′ with the input {x1, x2, . . . , xn} as the player A′′ of the communication game,
and the table TS,q as the black-box B with private input q, Lemma 3.4 is proved.

If accepted for publication by STACS, this work will be licensed under the Creative Commons Attribution-NoDerivs License.
To view a copy of this license, visit http://creativecommons.org/licenses/by-nd/3.0/.15

